Feasible Modified Subgradient Method for Solving the Thermal Unit Commitment Problem as a New Approach

نویسندگان

  • Ummuhan Basaran Filik
  • Mehmet Kurban
  • Wei-Chiang Hong
چکیده

The Lagrangian relaxationLRbased methods are commonly used to solve the thermal unit commitment UC problem which is an important subject in power system engineering. The main drawback of this group of methods is the difference between the dual and the primal solutions which gives some significant problems on the quality of the feasible solutions. In this paper, a new approach, feasible modified subgradient F-MSG method which does not require finding an unconstrained global minimum of the Lagrangian function and knowing an optimal value of the problem under consideration in order to update dual variables at the each iteration, is firstly used for solving the thermal UC problem. The major advantage of the proposed approach is that it guarantees the zero duality gap and convergence independently from the size of the problem. In order to discuss the advantages of this method, the four-unit Tuncbilek thermal plant, which is located in Kutahya region in Turkey, is chosen as a small test system. The numerical results show that F-MSG gives better solutions as compared to the standard LR method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Unit Commitment Problem Using Modified Imperialistic Competition Algorithm

One of the most important problems for power system operation is unit commitment (UC), for which different constraints should be satisfied. UC is a nonlinear and large-scale problem; thus, using the evolutionary algorithms has been considered for solving the problem. In this paper, the solution of the UC problem was investigated using Modified Imperialistic Competition Algorithm (MICA).  Simula...

متن کامل

An adaptive modified firefly algorithm to unit commitment problem for large-scale power systems

Unit commitment (UC) problem tries to schedule output power of generation units to meet the system demand for the next several hours at minimum cost. UC adds a time dimension to the economic dispatch problem with the additional choice of turning generators to be on or off.  In this paper, in order to improve both the exploitation and exploration abilities of the firefly algorithm (FA), a new mo...

متن کامل

SOLVING FUZZY LINEAR PROGRAMMING PROBLEMS WITH LINEAR MEMBERSHIP FUNCTIONS-REVISITED

Recently, Gasimov and Yenilmez proposed an approach for solving two kinds of fuzzy linear programming (FLP) problems. Through the approach, each FLP problem is first defuzzified into an equivalent crisp problem which is non-linear and even non-convex. Then, the crisp problem is solved by the use of the modified subgradient method. In this paper we will have another look at the earlier defuzzifi...

متن کامل

The Effects of Electricity Boiler on Integrated CCHP-Thermal-Heat Only Unit Commitment Problem Based on Hybrid GA Approach

Combined cooling, heat, and power (CCHP) units can be integrated with conventional separate cooling, heat, and power production units to meet demands. The goal of this study is to develop and examine a hybrid GA-heuristic optimization algorithm for solving the unit commitment problem for integrated CCHP-thermal-heat only system with considerations for electricity boiler. When environmental emis...

متن کامل

A New Hybrid Heuristic Technique for Unit Commitment and Generation Scheduling

This paper proposes a novel technique for solving generation scheduling and ramp rate constrained unit commitment. A modified objective function associated with a new start-up cost term is introduced in this paper. The proposed method is used to solve generating scheduling problem satisfying SRR, minimum up and down time as well as ramp rate constraints. Two case studies are conducted to imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010